“Kiestra TLA and the impending Artificial Intelligence revolution”

We are now into our 10th year of having Kiestra TLA at the laboratory where I work in New Zealand. I think it is fair to say that once you have worked in a laboratory with bacterial culture automation (i.e. Kiestra TLA, WASPLab) in place, you would never go back! We certainly don’t intend to.

I am a firm believer in optimising the quality of results generated by the microbiology lab. From a quality perspective, the advantages of automated bacterial culture systems over traditional manual-based methodologies are very impressive.

Here are ten important benefits in terms of quality that result from having a Kiestra TLA in place:

  • Improved Standardization – Automates streaking, incubation, and imaging, reducing variability between technicians and ensuring consistent results.
  • Enhanced Sample Traceability – Uses barcoding and digital tracking to prevent sample mix-ups and ensure a complete audit trail.
  • Optimized Culture Conditions – Automated incubation ensures optimal temperature and humidity, leading to better microbial growth and more reliable colony morphology.
  • Higher Reproducibility – Robotics ensure that plating and streaking techniques are performed identically every time, minimizing human error.
  • Faster Turnaround Times – Automation accelerates the workflow by processing and incubating samples continuously, leading to earlier pathogen detection and reporting.
  • Advanced Digital Imaging – High-resolution imaging captures colony growth at multiple time points, allowing for early detection and remote review without disturbing culture plates.
  • Reduced Contamination Risk – Minimizes human handling of samples, lowering the risk of cross-contamination and false-positive results.
  • Integration with LIS (Laboratory Information System) – Enables seamless data transfer, reducing transcription errors and improving result accuracy.
  • Enhanced Quality Control – Automated processes ensure that each step is performed according to predefined parameters, improving compliance with laboratory standards (e.g., ISO, CLSI).
  • Improved Staff Efficiency and Safety – Reduces manual labor, decreases repetitive strain injuries, and allows microbiologists to focus on complex tasks like interpretation and antimicrobial susceptibility testing.

It is important to note that the list above is Artificial Intelligence (AI) generated. It would take me much, much longer to generate such a list myself! I have however reviewed it and agree with all the points mentioned.

And it is due to the impending AI revolution, that systems such as Kiestra TLA are really going to come into their own over the next 10 years.

The Kiestra TLA system generates thousands of images of cultured agar plates each day, which are ripe for machine learning approaches. AI assisted applications, such as for MRSA identification and identification of urine pathogens are already available on the BD Kiestra platform.

I have no idea what the researchers at BD Kiestra are currently up to (!), but one could envisage that there is a lot of development work going on to further extend these AI-assisted apps into pathogen identification for general wound swabs, sputum samples, etc.

I observe with interest what the Kiestra TLA will be capable of by 2035. One would think that a lot of the routine microbiology culture results will be generated with very little human intervention, leaving the laboratory scientists to focus on the more complex (and interesting) samples.

Undoubtedly, by 2035, we will have new Kiestra TLA hardware in place in our laboratory, but it is in the AI-assisted software where the real revolution is coming…

Michael

 

“Reporting susceptibilities on UTIs, not urinary isolates…”

Urines arrive at diagnostic microbiology laboratories in considerable numbers. My own lab in New Zealand processes a couple of thousand urines a week. A significant proportion of these will have positive cultures. Therefore, the potential for the laboratory to promote good antimicrobial stewardship with respect to urinary tract infection is considerable.

My mantra on this is as follows: “The microbiology lab should never release antibiotic susceptibilities on a positive culture from a urine sample unless there is reasonable evidence accompanying the request that the patient has a UTI.”

The fact that the urine sample has turned up at the microbiology lab is insufficient evidence per se that the patient has a UTI. Urines get sent to microbiology laboratories for all sorts of spurious reasons, see below for a few examples:

  • Urines often get sent “automatically” from acute receiving wards as part of a blanket laboratory screen, where the patient may have a diverse spectrum of symptoms such as chest pain, shortness of breath, collapse, etc.
  • Urines can get sent from Long Term Care Facilities when someone decides to dipstick all their patients and send the urine samples with positive dipsticks to the lab for culture. Yes, it happens, and a lot more often than you might think!
  • Urine from indwelling catheters can get sent when the patient has a blocked catheter, or the catheter bag is cloudy.
  • Urines from patients attending outpatient clinics should also raise a flag. With the exception of urology clinics, patients who attend a pre-planned elective clinic appointment generally do not have an acute UTI. The same principle can apply for patients who are in hospital wards for other reasons.
  • Urines where the clinicians are looking for other tests, i.e. albumin/creatinine ratio, and due to laboratory processes the urine ends up getting cultured as well…

So, my argument is that if a urine sample turns up at the laboratory without any clinical details or with inappropriate clinical details, the lab is under no obligation whatsoever to release antibiotic susceptibilities on any organisms grown. 

The best approach of course is not to process the sample at all unless relevant clinical details are received. I would regard all of the following clinical details as being unacceptable to justify proceeding to urine culture:

  • No clinical details
  • Cloudy urine
  • Concentrated urine
  • Dark urine
  • Smelly urine
  • Urine dipstick urinalysis results only
  • Routine/monitoring/screening urine
  • Fatigue
  • Increased CRP
  • Lots of other non-specific symptoms!

The easy option for the lab of course is just to accept the sample, report the organisms, and the accompanying susceptibilities. However, this is almost certainly not the best way…

Michael

“Trying to escape microbiology”

“You can take the microbiologist out of the lab, but you can’t take the lab out of the microbiologist”

I was fortunate enough to attend the Olympics in Paris last month, the first time I have ever been to the Olympics. It was a fantastic experience, and we managed to see several events, including football, tennis, athletics, cycling, Rugby 7s and triathlon. Moreover, Paris is my favourite city, so I take every opportunity to visit!

I was hoping to forget all about all things microbiological for a month, and to a large extent this happened, until I was watching the triathletes swimming in the Seine!

You are probably aware of the story, but it was a big thing, and something of a propaganda stunt, allowing the Olympic athletes to swim in the River Seine, and the French Government invested heavily in cleaning up the Seine in order to facilitate this. 

In the end it was touch and go. Heavy rain before the Olympics put the E.coli counts up in the river, and at least one of the training sessions and the men’s individual event had to be postponed due to levels exceeding the acceptable limits.

A few athletes got sick after swimming in the Seine but of course it was virtually impossible to prove that the river swimming caused the illnesses.

Which got me thinking. “What are the acceptable faecal contamination limits for swimming in rivers, and is the risk any different for elite athletes in the Olympics?

There are safety standards set by World Triathlon, which indicate that colony-forming units (CFU) of E. coli per 100 milliliters of water should not exceed 1,000 and enterococci levels should be below 400 CFU/100ml. As one can see from this report, levels were acceptable on the day of the race, but not on several other days.

Of course, the cut-offs for E. coli and enterococci are completely arbitrary… The higher the counts, the higher the level of faecal contamination, and thus the higher the risk. E. coli and enterococci are of course only indicators, as most E. coli and enterococci do not cause gastrointestinal illness. There are a whole range of infections that one can acquire by swimming in faecally contaminated river water, including bacteria, viruses, & spirochaetes. Gastroenteritis is likely the highest risk but ear infections and skin infections can also occur.

There are several other factors that may affect the overall risk. The risk will depend on the range of gastrointestinal pathogens present in the water. I.e. swimming in a river in India might carry a different risk to swimming in a river in Paris even if the E. coli levels are equivalent. The amount of water ingested will also be a factor. I imagine an elite athlete going hell for leather in the Olympic triathlon will be intaking a lot more water whilst swimming than if President Macron goes for a leisurely dip in the Seine, if he ever does. The exposure time will also be a factor. The athletes competing in the 10km distance swimming event will have a lot more cumulative exposure than the triathletes swimming 1500m. Finally, the “host” needs to be taken into account. The cohort swimming in the Olympics will be overwhelmingly young, fit and immunocompetent thus potentially at less risk than the general population.

So clearly it is not as simple as just saying >1000 E. coli per 100ml of water is unsafe and less than that is safe. It is far more nuanced than that.

For elite athletes, whose livelihoods depend on competing in such events, they really have little choice in the matter. For myself however, who is definitely not an elite athlete, I like looking at the Seine, and it certainly appears cleaner than in years gone by, but I will pass on the swimming just for now.

Michael